首页

  1. 首页
  2. 环保论文
  3. 内容

造纸废水的混凝试验研究

      【摘 要】造纸废水中由于含有木质素及其衍生物具有较高的色度和COD,水处理中多采用铝盐混凝剂通过混凝沉淀加以净化。混凝反应包括混合和絮凝两个过程,影响这两方面的因素很多,包括混凝剂的种类、混合速度、水质特征等等[1]。其中混凝剂的投加量、pH值影响着混凝反应进程和结果,也决定工程应用的基建与运行费用。本文就pH值和混凝剂投加量对造纸废水混凝反应的影响进行研究,浅谈造纸废水混凝反应的机理 

  【关键词】造纸废水;混凝实验;PH值 

  1.废水来源 

  造纸废水由新疆博湖苇叶股份有限公司的含木浆废水。PAC(聚合氯化铝)和PAM(聚丙烯酰胺)为我公司产品提供。搅拌器选用DBJ-621型定时变速搅拌机。 

  2.试验方法 

  取200ml水样装入入烧杯中,放在六连磁力搅拌器上,开动搅拌器在高速(120~200 r/min)搅拌1min,加入PAC,再搅拌1min,若加入PAM在搅拌30s后加入,低速(20~40 r/min)下搅拌3min,沉降10min后在清液的二分之一处取样。按《水和废水监测分析方法 》分别测定COD,pH值[2]。 

  3.pH值对造纸废水混凝的影响 

  调节废水的pH值分别为4、6、7、9在每一个pH值下分别投加60、80、100、120、140、160mg/L PAC进行混凝试验。得出在不同pH值下PAC不同投加量对造纸废水COD去除率的影响。结果见图1。重复以上的试验条件,同时加入1mg/L的PAM,测得COD的去除情况,结果见图2。 

  如图1所示,从总的趋势上看,随着pH值从低到高,COD的去除率逐渐下降,明显的特征是pH值为4时各种投加量下COD去除率都在40%~55%之间,说明此时投加量不是主要的影响因素,pH值决定混凝结果。pH值为7时,明显的趋势是随着PAC投加量的增加,COD去除率也在逐渐增加,此时投加量决定COD的去除率效果。pH值为6时在投加量由100mg/L增加到120mg/L时,COD的去除率有一个明显的突跃,继续增加投加量时去除率又逐渐上升,在投加量为160mg/L时去除率达到最高,说明是pH值和投加量共同作用的结果。pH值为9时COD去除率低而且不稳定,说明pH值和投加量都不利于COD的去除。 

  图2是在图1的基础上投加PAM的试验结果。与图1相比曲线趋势上没有大的变化,随着投加量的增加COD去除率也随之增加,不同的是COD的去除率普遍有所增加,曲线也变得平滑,突跃也消失。pH值为4时的曲线除了去除率普遍增加外,其余变化不大,COD去除率介于50%~70%之间。pH值在6、7、9范围时COD去除率明显的变化是,最低投加量与最高投加量COD去除率之间的差距缩小。分析可能是因为加入PAM后,在已形成凝聚核基础上,依靠PAM链状大分子的联带、卷扫作用使小的颗粒和絮体迅速增长,同时吸附、卷扫网捕其它胶体和较小的颗粒物质一起沉淀。所以初期只要投入凝聚剂可以使胶体脱稳,PAM就可以发挥大分子的强大作用,加速混凝反应速度及处理效率。 

  4.投加量对造纸废水混凝的影响 

  调节废水的pH值在4~9之间,在下分别投加60、80、120、160mg/L的PAC,测得COD去除率见图3。重复以上试验,在投加PAC的同时投加1mg/L的PAM,测得COD的去除率,结果见图4。 

  图3中表示不同pH值下四种投加量与COD去除率之间的关系,从中可以看出,不同投加量下,COD去除率随着pH值的增加而降低,说明低pH条件下有利于COD的去除,pH值是决定木质素混凝的主要因素。在投加量160mg/L时,pH为5~6时COD去除率最大,说明在此pH条件下PAC的水解产物具有较强的混凝效果,当投加量达到规模时,COD去除率就会有明显的提高。 

  图4中是在图3反应的基础上投加PAM的试验结果。图中可以发现在投加PAM后,COD去除率都有所增加,发现投加PAM后pH值在5~6时COD去除率出现了一个高峰,分析可能是在此pH时PAC水解产物与木质素分子以及PAM之间具有较佳的结合方式。在实际工程应用中考虑基建投资、运行费用和后续处理的要求,选择pH为6.0,从图中可以看出,当投加量为80mg/L时,COD去除率可以达到50%左右;投加量为120mg/L时,COD去除率可以达到70%以上,所以完全可以根据需要确定PAC的投加量。 

  5.铝盐混凝剂处理造纸废水的机理探讨 

  造纸废水中含有的胶体物质主要是木质素和纤维素,其中木质素分子是一种高分子聚合物,其分子量大小从几百到几百万道尔顿,具有复杂的网状结构,其中原子之间以共价键相联,网状分子表面含有大量的负电荷离解性基团(羟基、羧基等)而具有一定的溶胀度和亲水性。碱性条件下,这类离解性基团易于离解,并向溶剂伸展,使网状高分子向三维空间发展,由于分子伸展引起的弹性收缩力,阻止了溶剂分子的进入,同时,原子与溶剂分子之间相互作用形成溶剂化外壳,使分子的憎水部分保留在网状结构的内部,形成层次分明的木质素分子结构。由于溶剂化外壳的屏障作用,阻止了木质素分子之间以及与其他颗粒分子之间的直接接触,而使胶体具有一定的稳定性[3]。 

  造纸废水中的纤维素分子主要是悬浮的短纤维,不溶于水,胶体颗粒与溶液之间具有明显的界面,表面具有双电层结构,依靠颗粒的布朗运动达到动力学稳定,依靠颗粒表面所带电荷的斥力和范德华力而具有聚集稳定性。 

  根据上述实验可以推测铝盐与木质素的混凝机理:主要是由于在低pH值下PAC水解产物与木质素分子上的负电荷离解性基团发生反应,使溶解态的木质素分子失去水化作用,变成具有界面的憎液胶体,加上凝聚剂的混凝作用,最终沉淀下来。pH值条件为混凝反应的发生创造了可能,凝聚剂分子的混凝作用启动了高分子脱稳,凝聚核开始形成,PAM(聚丙烯酰胺)的加入强化了沉淀完成的速度和质量。 

  6.结论 

  (1)pH是影响木质素混凝的主要因素,混凝剂的加入具有脱稳作用。 

  (2)PAM的加入能加速混凝反应的速度和混凝效果,具有助凝作用。 

  (3)在实际应用中可以根据具体条件,选取pH和投加量共同作用的节点,这样既可以减少运行费用,又可以达到较高的COD去除率。 

  (4)高分子溶液的混凝机理,首先由正电荷离子破坏其溶剂化外壳,使变成具有明显界面的憎液胶体,然后依靠双电层的中和作用最后沉淀下来。 

  参考文献: 

  [1] 李润生,李凯.我国水处理混凝剂的发展趋势[J]中国给水排水,2010 (8). 

  [2] 国家环保总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002. 

  [3] 汤鸿霄,栾兆坤.聚合氯化铝与传统混凝剂的凝聚-絮凝行为差异 [J].环境化学 ,1997(6).

相关文章

回到顶部
请复制以下网址分享
造纸废水的混凝试验研究
https://m.gc5.com/hbgc/wscl/10331332.html