介绍: 在Takagi-Sugeno模糊逻辑系统的基础上,提出了改进的模糊Modular神经网络模型(IFMNN),并将该模型应用于既有建筑的可靠性鉴定。改进的模型是将传统的模糊Modular神经网络模型中的单输出改进为多输出。这种改进的多输入多输出的模糊Modular神经网络模型具有预测性能好、训练学习速度快的优点,它的系统门网络采用模糊C均值聚类算法代替K-means算法,专家网络的训练中引进了先进的Levenberg-Marquardt算法。在应用改进的模糊Modular神经网络模型对既有建筑进行可靠性鉴定的过程中,综合考虑了各主要因素对既有建筑可靠性鉴定等级的影响,并将经量化处理的影响因素作为网络的外部输入,将网络计算得到的4个输出值分别作为样本对应于不同可靠性等级的隶属度,建筑可靠性鉴定的最终评判等级为最大隶属度所对应的等级。训练和预测样本的计算结果证明了改进的模糊Modular神经网络模型在既有建筑可靠性鉴定中应用的可行性和有效性。