Calculate Model Study of the Soil Which is Steamed
and Distributed in the North of China
Lu Zeng-qi Fu Xue-gong
(Cangzhou Bureau of Hydrology & water Resource Survey, Cangzhou 061000, China )
Abstract: Calculation of quantity of soil steamed and distributed takes an important part in moisture content predict, rainfall surface flow calculate and evaluation of water resource,. Utilize water conservancy type soil evaporimeter and related scene , radiation , the materials observed on the surface of water to evaporate the instrument and, consider the influence of each factor of " soil - plant - atmosphere "system to soil steamed and distributed, set up calculate model of the soil steamed and scattered which is suitable for black dragon harbours.
Keyword:Soil steamed and distributed; Moisture content ; Soil - Plant - Atmospheric system ;Ground heat-conduction
1 土壤蒸散发影响因素
土壤蒸散发包括土壤蒸发和植物蒸发(散发),是半干旱半湿润的黑龙港地区水文循环主要的支出项。近几十年来由于人类对大自然改造能力的大幅度提高,土壤蒸散发量在水文循环中的比例大幅度提高,局部地区、部分年份的蒸散发量甚至大于降水量—深层地下水开采量、外流域引水量的一部分也消耗于蒸散发。区域蒸散发量的主要影响因素有土壤、气象、作物三个方面。
1.1 土壤因素
影响土壤蒸散发的土壤因素可分为土壤含水量、地下水埋深、土壤质地及结构、土壤色泽与地表特征。
(1) 土壤含水量
土壤含水量是影响土壤水分蒸发的主要因素。土壤含水量高时,土壤蒸发实质上接近自由水面蒸发,蒸发率比较稳定。随着土壤含水量减少,非饱和渗透系数降低,补给蒸发的水分响应减少。当土壤含水量减少至非饱和渗透系数接近零时,土壤蒸发全部以水汽扩散方式进行。
(2) 地下水埋深
地下水埋深越浅,土壤蒸发量越大。如果地下水面接近地面,其蒸发量甚至大于光滑水面的蒸发量。因为蒸发表面面积增大了、反射率减少了。
(3) 土壤质地及结构
土壤质地及结构关系孔隙的数量、体积及其连通性,也影响到非饱和渗透系数。根据水分在非饱和土壤移动情况,各种土壤的非饱和渗透系数的大小为:粘土>轻粘土>细砂壤土>沙土。设粘土土壤(直径小于0.07mm)的蒸发量为100%,则直径0.25~0.5mm的土壤蒸发量为81%,而直径1.0~2.0mm的土壤为22.2%。
(4)土壤色泽及地表特征
土壤色泽影响土壤吸收太阳辐射,因而影响于土壤温度和蒸发。土壤颜色愈深,蒸发量越大。黄色土壤的蒸发量比白色的大7%,棕色土壤的蒸发量比白色的大19%,黑色土壤的蒸发量比白色的大32%(对太阳光的反射率不同)。
由于风的紊动作用,高地的土壤蒸发量较谷地和盆地的大,粗糙地面的蒸发量较平滑地面的大。地表坡向不同,吸热也有差异。15°的南向斜坡的土壤蒸发量作为100%,则东向斜坡的蒸发量为86%,北向斜坡为71%。[1]
1.2 气象因素
主要包括辐射与气温、湿度、风和降水方式四个方面内容
(1)辐射与温度
连续蒸发必需有连续供给汽化潜热的能量,太阳辐射是汽化潜热能量的来源,黑龙港流域天文辐射量较小,但是晴天的机会多,获得太阳的能量多,所以土壤蒸发量大于天文辐射大,但是经常阴天的南方地区。气温和地温对于蒸发的影响很直接,气温决定空气中饱和水汽含量和水汽扩散的快慢,地温决定土壤中水分子的活跃程度,因此气温和地温越高,土壤蒸发越强烈。
(2)空气湿度
大气的相对湿度是影响蒸发的重要因素。当温度为17℃~18℃,平均相对湿度从91%降到75%,日蒸发量从2.5mm增至6.3mm。在大气中水汽接近饱和的季节,土壤蒸发速度较小。此外地面以上的湿度梯度越大,土壤蒸发越强烈。
(3) 风速
风使接近土壤表面的空气连续不断地被扰动,将接近饱和的空气带走,以较干燥空气代替。风速越大,蒸发作用越强。当风速为5.4m/s时,从100m3方形土柱中蒸发的水量为7.8g/小时,而当风速为0时,蒸发量仅为0.3g/小时。[2]
(4) 降水方式
土壤中可供蒸发的水分与降水的数量、降水方式有关。降水量多,蒸发量大。同量的降水如果分成几次小雨降下来,蒸发也多。
1.3 植物类别和生长期
(1)植物品种
仙人掌、松树等针叶植物的蒸散发量小,南方的大叶植物蒸散发量相对较大。同一种植物,因为遗传因素、种植密度、生长状况不同蒸散发量不同。
(2)植物的生长阶段
植物生长初期,苗小生长慢,叶面面积小,土壤蒸散发以土壤蒸发为主。随着植物生长,叶面积增大以及气温升高,植物散发逐步占主导地位,蒸散发总量增加。生长后期,由于植株衰老,散发能力降低,蒸散发总量减少。
2 土壤蒸散量(Et)计算模型的建立
土壤蒸散是涉及“土壤—植物—大气”系统的比较复杂的物理过程。其计算模型可用下式建立:
(1)
(2)
式中:
——反映大气和植物因素的陆面蒸散能力;
——反映土壤因素的以土壤有效含水量为指标的一个函数;
——用修正后彭曼公式计算得到的土壤足够湿润情况下的土壤蒸散量,它反映大气因素;
Q——地热传导修正量;
R——反映植物因素的植物散发系数;
下面就上述各个量的确定方法分别讨论:
2.1 陆面蒸散能力(Em)的计算。
用衡水水文实验站20平方米蒸发量代表自然水体的蒸发量E0与彭曼公式计算得到的蒸发值E计相比较,发现其差值很有规律:E计4~8月份系统偏大、9月到次年2月系统偏小。用回归分析方程及相关系数;
4—8月: 相关系系数r=0.943 (3)
9—次年2月: 相关系系数r=0.920 (4)
式中E计为本站资料代入彭曼公式计算值。
彭曼公式开始主要用于水面蒸发计算,但公式的基本假定也适用植被地段表面的情况,即当土壤表面有充分水分供应时,可以得出主要取决于气象条件的可能蒸发值。两者不同之处在于下垫面差别,可用反射率这个参数反映。我们取土壤表面的反射率为0.2代入彭曼公式得到E计,再用回归方程(3)、(4)进行地区性修正,即可得Eo(见表1)。
表1 1986年—1989年各月Eo计算值(mm/月)